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Abstract
Toward a unified algebraic understanding of physical concepts of the so-called
particle and collective motions, a new theory for unified description of both
the motions is proposed with the use of time-dependent Hartree–Fock theory
on a circle S1. The theory simply and clearly elucidates a collective motion
induced by a TD mean-field potential. It also describes symmetry breaking
of fermion systems and successive occurrence of the collective motion due to
recovery of the symmetry. The theoretical frame asserts that the Fock space of
finite-dimensional fermions has an algebraic structure to be embedded into that
of infinite-dimensional fermions.

PACS numbers: 05.30.Fk, 03.65.-w, 21.60.Jz, 02.20.-a

1. Introduction

The standard description of fermion many-body systems starts with the most basic
approximation that is based on an independent-particle picture, i.e. self-consistent field (SCF)
for motion of the fermions. The Hartree–Fock (HF) theory is typical of such approximations
for ground states of the fermion systems. Excited states are treated with the well known
random phase approximation (RPA). The time-dependent HF (TDHF) equation is a nonlinear
equation due to its SCF character and has no unique solutions [1]. To go beyond a perturbative
method with respect to collective variables to extract large-amplitude collective motions out
of a fully parametrized TDHF manifold [2], we have proposed a unified aspect of the SCF
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viewpoint on group U(n) and a τ -functional one on the group in soliton theory [3] (referred to
as I). In this context we have aimed at having close connection between concepts of mean-field
potential and the gauge of fermions inherent in the SCF method and at making clear roles of
loop groups relating them [4]. Such an aspect is expected to give a new algebraic tool for
microscopic understanding of the fermion systems.

To obtain a microscopic understanding of cooperative phenomena, the concept of
collective motion is introduced in relation to TD variation of a self-consistent mean field,
while that of independent-particle motion is described in terms of particles referring to a
stationary mean field. The TD variation of the TD mean field is attributed to couplings
between the collective and the independent-particle motions and couplings among quantum
fluctuations of the TD mean field [5]. In viewing the above picture for both the motions, we
have a very important and interesting question, which motivates this paper: what algebraic
mechanism could play behind the concepts mentioned above to obtain the unified aspect of
both the motions? In this paper, we will investigate profoundly the TDHF equation on circle
S1 presented in I

ih̄∂tU(gu(t, z, z
−1))|φ〉 = HHF[W(gsu(t, z, z

−1))]U(gu(t, z, z
−1))|φ〉

gu(t, z, z
−1) = gsu(t, z, z

−1)e−iεı(t,z,z−1)/h̄
(1.1)

where gu ∈ U(n) and gsu ∈ SU(n). |φ〉 is an m-particle Slater determinant (S-det) called a
simple state. The εı denotes a real valued n-dimensional diagonal matrix. The W defined later
denotes a density matrix dependent on t and S1 (z = eiϕ) through gsu. An answer to the above
question may be possible with the aid of algebraic reduction of un to sun in the τ -functional
method [6].

Following the conventional manner we start with an sun Lie algebra consisting of a
particle–hole (p–h) component and a un which includes particle–particle (p–p) and hole–
hole (h–h) ones for the m simple state |φ〉 [1]. Then we have a U(n) group orbit. The
equivalence relation identifies different states of phase depending only on diagonal components
in h–h type with the same state [7]. Under this equivalence relation, it is essentially enough
to treat only an SU(n) group orbit. The HF Hamiltonian, however, has a value on the un
but not on the sun. Therefore, to describe dynamics on the SU(n) group orbit, we must
remove extra components not satisfying the sun from the fully parametrized HF Hamiltonian.
Using the equivalence relation we have only enough to take diagonal components in p–p and
h–h types into account to assign the HF Hamiltonian. Each value of these quantities plays a
role of the phase of the (quasi-particle) fermion gauge as the canonical transformation shows.
For instance, let c†

α(gsu) and cα(gsu) (α = 1, . . . , n) be (quasi-particle) fermion creation and
annihilation operators. Then c†

α(gsu) � c†
α(gsu)e

−i(εı)αα and h.c. hold. It is noted that these
quantities play crucial roles to elucidate a unified algebraic understanding of the concepts
of particle and collective modes in studying relations between the SCF method and the τ -
functional method shown in I. The gauge-phase can be separated into a term which comes
from single pair of fermions and another term originated from a particle-number operator of
the fermions on the Lie algebra of the fermion pairs. The former relates to the particle mode
and the latter to the collective one. By removing the above superfluous components of the
HF Hamiltonian, it turns out that assignment of the HF Hamiltonian to both the modes brings
the concepts of particle and collective motions. The usual TDHF theory does not have a
complete scheme to treat both the motions in a unified manner. On the contrary, the TDHF
equation on S1 (1.1) has a powerful scheme for such problems. It provides not only a manifest
and algebraic understanding of the motions but also a theoretical scheme to describe large-
amplitude collective motion with a single pair of collective variables. As a simple illustration
of particle and collective motions, assuming time-periodicity of the motions, we can derive a
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new unified equation for both the motions which goes beyond the usual HF and RPA equations.
The TDHF theory on S1 is constructed on a collection of infinitely various subgroup

orbits consisting of loop paths in a finite-dimensional Grassmannian Grm of finite-dimensional
fermion Fock space. As a consequence, it will be exhibited that the TDHF theory on S1 can
be also built on an infinite-dimensional Grassmannian of infinite-dimensional fermion Fock
space F∞ [3]. To do this the above particle-number operator must be proved to be the set of
shift operators with degree nr(r ∈ Z) in the τ -functional method [8]. Simultaneouly we must
extract sun-components from the fully parametrized HF Hamiltonian by the above assignment.
This is nothing but the sun (∈ sln) reduction in the τ -functional method. Suppose that the m

simple state |φ〉 corresponds to a highest weight vector according to the idea of Dirac’s positron
theory [9]. If we choose a vacuum with broken symmetry on S1, the vacuum state is able to
deform through the shift operators associated with collective modes, so the τ -function in the
soliton theory can be also deformed. In other words, by varying weight functions attached to
those operators, which originate from the above assignment, the vacuum state can really move
to change drastically. Then we find the algebraic mechanism for appearance of the collective
motion induced by TD mean-field potential. This also simply and clearly gives us a deeper
algebraic understanding of physical concepts of symmetry breaking and successive occurrence
of collective motion due to recovery of the symmetry. To approach a solution of the new TDHF
equation, we must investigate seriously how to extract various subgroup orbits satisfied with
the Plücker relation on S1, i.e. submanifolds in the infinite-dimensional Grassmannian in F∞.
This is connected with a problem of how to determine a solution form for the soliton equation
in the sun (∈ sln)-hierarchy.

In section 2, manipulating algebra with the aid of loop groups, a new theory for describing
both the motions in a unified way is given. In section 3, we strictly treat it using affine Kac–
Moody algebra and transcribe it onto the τ -functional space. Time evolution of the vacuum
state (mean-field potential) is explicitly given for a simple stationary solution. An embedded
form of the usual RPA equation and a corresponding collective Hamiltonian are shown. Finally,
a summary and some concluding remarks will be given.

2. Algebraic mechanism causing particle and collective motions

Let us start with the TDHF theory having a group parameter on circle S1 (z = eiϕ)

i∂tgu(t, z, z
−1) = F[W(gsu(t, z, z

−1))]gu(t, z, z
−1) (2.1)

where we have used h̄ = 1. Symbols † and � mean Hermitian and complex conjugations,
respectively. The HF Hamiltonian Fαβ (α, β = 1, . . . , n) is represented as

F[W(gsu)]αβ = hαβ + [αβ|γ δ]Wδγ Wαβ
d=

m∑
a=1

(gsu)αa(g
†
su)aβ . (2.2)

The above TDHF equation on S1 can be rewritten into

i∂tgsu(t, z, z
−1) = Fsu(t, z, z

−1)gsu(t, z, z
−1)

Fsu(t, z, z
−1)

d= F[W(gsu(t, z, z
−1))] − gsu(t, z, z

−1) · ∂tεı(t, z, z−1) · g†
su(t, z, z

−1).
(2.3)

Since the Fsu must be elements of sun, the relation below holds:

Tr
{F[W(gsu(t, z, z

−1))] − gsu(t, z, z
−1) · ∂tεı(t, z, z−1) · g†

su(t, z, z
−1)

} = 0 (2.4)

which leads to Tr F[W(gsu(t, z, z
−1))] = Tr ∂tεı(t, z, z−1) where Tr denotes the operation of

trace summation. We call this relation the sun-condition for the HF Hamiltonian. In the usual
treatment of the SCF method which is not explicitly dependent on z, the HF solution is taken
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to be gsu = g0
su (∂tg0

su = 0) and εı(t) = εı0 · t . Then the sun-condition becomes Tr F = Tr εı0.
Each component of εı0 is a well known quasi-particle energy. It brings time evolution of phase
of the (quasi-particle) fermion gauge. For a general solution, time evolution of phase with
respect to an infinitesimal interval dt can be expressed as ∂tεı(t) · dt . Throughout the study of
relations between the SCF method and the τ -functional method in I, we notice the following
facts. The m simple state |φ〉 corresponds to a highest weight vector in F∞ and leads us to
choice of a vacuum with broken symmetry. The shift operators with degree nr (r ∈ Z) given
later play a crucial role for the collective mode. They are related to the unit matrix In in the Lie
algebra and the particle-number operator in the usual SCF method. These facts, as is shown
in the succeeding section, can separate the above phase of fermion guage into a particle mode
and a collective one.

From the three points (1) the sun-condition for the HF Hamiltonian, (2) the vacuum state
given by the idea of Dirac’s positron theory and (3) the phase of (quasi-particle) fermion
gauge εı separated into particle and collective modes, we can elucidate a unified algebraic
understanding of the concepts of particle and collective motions. We are now in a stage to
describe manifestly the algebraic mechanism causing the concept of particle and collective
motion. Using a formal Laurent expansion (Fourier), the group parameter on S1 in (2.1) can
be rewritten as
gsu(t, z, z

−1) =
∑
r∈Z

gsu(t)rz
r εı(t, z, z−1) = εı0(t) +

∑
r�1

(
εr(t)Inz

r + ε−r (t)Inz
−r

)
W(gsu(t, z, z

−1)) =
∑
r∈Z

Wr(t)z
r (Wr)αβ =

∑
s∈Z

m∑
a=1

((gsu)s)αa((g
†
su)s−r )aβ .

(2.5)

We call εı0 a particle phase and εrz
r with ε−r (t) = ε�r (t) a collective phase, because the former

is connected to single pair of fermions and the latter to a collective pair of fermions (the
particle-number operator). Note that the latter itself does not mean the collective operator in
the ordinary sense. Then with the use of ĝsu and În(r), which are defined by infinite periodic
sequences of block form of gsu andn-dimensional unit matrix In [3,8], the TDHF equation (2.3)
on S1 can be transformed into

Dtĝsu =
{
F[W(ĝsu)] − ĝsu · ∂t ε̂ı0 · ĝ†

su + i
∑
r�1

(
Dt,rεr · În(r) + Dt,−rε−r · În(−r)

)}
ĝsu

(Fr )αβ
d= hαβ · δr,0 + [αβ|γ δ](Wr)δγ Dt,r

d= i∂t − r∂tϕ(t)

(2.6)

where we have used [ĝsu, În(±r)] = 0. The explicit block form is defined in I.

Defining ε̂
d= ∑

r�1(εr · În(r) + ε−r · În(−r)), particle and collective phases are given as

ε̂ı0 =




. . .

εı0
εı0

εı0
. . .




ε̂ =




. . .
. . .

ε−1In 0 ε1In
ε−1In 0 ε1In

ε−1In 0 ε1In
. . .

. . .


 .

(2.7)

The time-dependence ϕ = ϕ(t) on circle S1 is not an absolutely necessary condition but gives
important roles for collective motions in the SCF method. Due to this we can interpret the
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collective motion as resonating/interfering phenomena between fermions which are dependent
on a common gauge factor on S1.

Using the above framework, the sun-condition for the HF Hamiltonian of (2.4) is given as

Tr F0 =
n∑

α=1

{hαα + [αα|γ δ](W0)δγ } =
n∑

α=1

∂t (εı0)αα = Tr ∂tεı0

Tr F±r =
n∑

α=1

[αα|γ δ](W±r )δγ = −i
n∑

α=1

Dt,±rε±r (In)αα = −inDt,±rε±r .

(2.8)

Substituting these differential terms of the collective phase into the original TDHF
equation (2.6) on S1, it can be cast into

Dtĝsu =
{
F[W(ĝsu)] − ĝsu · ∂t ε̂ı0 · ĝ†

su − 1

n

∑
r�1

(
Tr Fr · În(r) + Tr F−r · În(−r)

)}
ĝsu

(2.9)

where we have used [ĝsu, În(±r)] = 0 again. This TDHF equation on S1 shows manifestly
the dependence of both the phases on ĝsu. While the motion of the first phase appears as that
of the degrees of freedom of each (quasi-) particle, motion of the second appears as collective
motion in common to all the particle ones. This equation has a scheme capable of describing
large-amplitude collective motions if we could know a concrete form of ĝsu.

We will now derive a new equation, which has a simple time-periodic solution. It is able
to describe in a unified way both the motions going beyond the usual static HF equation and the
RPA equation. If we take ∂t ĝ0

su = 0, εı0(t) = εı0
0 · t and ϕ(t) = −ωc · t , the TDHF equation (2.9)

on S1 can be expressed as

ε̂ı0
0(ĝ

0
su) +

1

n

∑
r�1

(
Tr Fr · În(r) + Tr F−r · În(−r)

)
+ ωcĝ

0
su

†&(ĝ0
su) = ĝ0

su
†F(ĝ0

su)ĝ
0
su

&(ĝ0
su)

d=




. . .
. . .

−g0
−1 0 g0

1

−g0
−1 0 g0

1

−g0
−1 0 g0

1
. . .

. . .




(i∂t ± rωc)ε±r = i

n
Tr F±r (ĝ

0
su).

(2.10)

Notice that large-amplitude collective motion for only one mode should be described by
only one angular frequency ωc invariant under ĝ0

su but the quasi-particle energy is in general
dependent on ĝ0

su. From equation (2.10) we see the following: ε̂ı0
0 relating to the particle

phase gives a (quasi-) particle energy and Tr F±r (r � 1) give a collective energy due to
time evolution of the collective phase. The latter are interpreted as an energy renormalized
to the (quasi-) particle energy owing to the collective motion in the sense of the quantity∮ {εı0

0 + 1
n

∑
r�1

(
Tr Fr (ĝ

0
su)e

−irωct + Tr F−r (ĝ
0
su)e

irωct
)
In} dt for a periodic interval. Each

difference of energies in the transition, however, remains (εı0
0)αα − (εı0

0)ββ (α, β = 1, . . . , n)
through alternative cancellation of the renormalized energies. Deformation of the vacuum
state arising from the collective phase will be explicitly classified with the help of the Schur
function [6, 8], but now it is possible that amplitudes of oscillation are obtained by solving
differential equations for εr and ε−r in (2.10) with appropriate initial conditions as shown later.
The usual SCF method describing time-periodic collective motions, as the RPA equation does,
is related to treatment of the term ωcĝ

0
su

†&(ĝ0
su) in the LHS of the first equation in (2.10).
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Turning back to the TDHF equation on S1 (2.9), it is possible to elucidate an algebraic
mechanism if we solve the following problems of symmetry breaking and successive
occurrence of collective motion due to recovery of the symmetry: (i) Determination of a
form of solution ĝsu linking to that of raising and decreasing states on circle S1. (ii) Canonical
transformation U(ε̂ı) by both the phases, which acts on the vacuum state and causes a broken
symmetry onS1. ThenU(ε̂ı) can change not only phase in the ordinary sense but also magnitude
of amplitude of the vacuum state. (iii) Appearance of motion of the collective phase satisfying
the sun-condition for the HF Hamiltonian accompanying change of the vacuum state. Thus it
can be said that the collective motion is just a motion of the vacuum state. It should be noted
that in the usual SCF manner a phase term only changes the so-called phase in a vacuum state.
In contrast, in the SCF method on S1 the same term produces not only change of the phase but
also that of the amplitude of the vacuum state.

The TDHF theory on S1 provides not only an algebraic means clarifying physical concepts
for microscopic understanding of fermion many-body systems but also a scheme capable of
describing large-amplitude collective motion for a single pair of collective variables. The
theory is also able to give an interesting illustrative example to clear an algebraic structure
among the original fermion field, the vacuum field defined in the SCF potential and the bosonic
field associated with the Laurent spectra on S1.

3. On affine Kac–Moody algebra ŝun

We will give more strictly the algebraic mechanism causing both the motions with the help of
an associative affine Kac–Moody algebra [8]. According to sections 1 and 2, with the use of a
free-particle vacuum |0〉 (cα|0〉 = 0), let the group orbit and m simple state be the following
forms, respectively:

U(gsue−iεı)|φ〉 = U(gsu)U(e−iεı)|φ〉 |φ〉 = c†
m · · · c†

1|0〉. (3.1)

In the usual SCF method U(e−iεı)|φ〉 = e−i
∑m

a=1(εı)aa |φ〉� |φ〉 denotes the equivalence relation
mentioned before. The (quasi-) fermion operators become dependent on S1 through gsu. Then
c† and c must be also dependent on S1 from the viewpoint of symmetry, that is, they must
also belong to elements in the (quasi-) particle. The Laurent expansion in section 2 induces
these fermion operators so that infinite-dimensional fermion operators are introduced [3]. Let
ψnr+α and ψ�

nr+α (r ∈ Z, α = 1, . . . , n) be the infinite-dimensional fermion operators. On
the circle S1, z can be regarded as a common gauge factor of the infinite-dimensional fermion
operators. It becomes a mathematical device to raise resonating (interfering) phenomena
between fermions as a collective motion. To describe such phenomena, we must inevitably go
beyond the conventional manner in the finite-dimensional fermion Fock space to the infinite
one. For this aim, it is effective to introduce an affine Kac–Moody algebra according to the
idea of Dirac’s positron theory. Let |Vac〉 and |m〉 be a perfect vacuum and a reference vacuum
|m〉 = ψm · · ·ψ1|Vac〉 [8]

ψnr+α|Vac〉 = 0 〈Vac|ψ∗
nr+α = 0 (r � −1)

ψ∗
nr+α|Vac〉 = 0 〈Vac|ψnr+α = 0 (r � 0).

(3.2)

We embed the free vacuum |0〉 and the m simple state |φ〉 into the infinite-dimensional Fock
space F∞ as |0〉 �→ |Vac〉 and |φ〉 �→ |m〉(m = 1, . . . , n). We are forced to choose a

vacuum with broken symmetry on S1. Using the correspondence c†
αcβz

r �→ τ(eαβ(r))
d=∑

s∈Z
ψn(s−r)+αψ

∗
ns+β and the normal-ordered product ψnr+αψ

�
ns+β :

d= ψnr+αψ
�
ns+β − δαβδrs
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(s < 0), let us define an ŝun (⊂ ŝln)Lie algebraXγ = Xγ +C ·c with C∗ = −C, c|m〉 = 1·|m〉
(level-one case) and the two-cocycle α (= ∑N

−N r Tr γrγ ′
−r ) [8] where

Xγ =
N∑

r=−N

∑
s∈Z

(γr)αβ : ψn(s−r)+αψ
∗
ns+β : γ †

r = −γ−r (Tr γr = 0)

[Xγ , c] = 0 [Xγ , Xγ ′ ] = X[γ, γ ′] + α(γ, γ ′) · c.
(3.3)

Under the equivalence Inz
±r � În(±r) �→ ,±nr , the phase εı(t, z, z−1) in gu of (2.1)

corresponds as

εı(t, z, z−1) �→ Xεı
d= Xεı0 + Xε

Xεı0
d=

n∑
α=1

∑
s∈Z

(εı0(t))αα : ψns+αψ
∗
ns+α : Xε

d=
∑
r�1

(εr(t),nr + ε�r (t),−nr ).
(3.4)

,±nr , composed of the shift operators ,k
d= ∑

i∈Z
: ψiψ

∗
i+k: giving the boson algebra, has

properties

[,nr,,ns] = nrδr+s,0 [Xγ ,,±nr ] = [Xεı0 ,,±nr ] = 0

,nr |m〉 = 0 (r � 1).
(3.5)

From these we obtain the action of the canonical transformation on the vacuum state |m〉 as

eXγ e−iXεı |m〉 = eXγ e−iXεı0 e−iXε |m〉 = e− 1
2

∑
r�1 nr|εr |2−i

∑m
a=1(εı0)aae−i

∑
r�1 ε

�
r,−nr eXγ |m〉

e−i
∑

r�1 ε
�
r,−nr =

∑
r�0

Sr(−iε�1,−n,−iε�2,−2n, . . .)
(3.6)

where we have used the Baker–Campbell–Hausdorff formula eAeB = eA+Be
1
2 [A,B]

under [A,B] ∈ c-number and the Schur-polynomial, i.e. exp
( ∑

k�1 xkp
k
) =∑

k�0 Sk(x1, x2 . . .)p
k . Notice the equivalence relation ,−nr � ,−nrz

−r . Then a canonical
transformation by the particle phase induces change of only the phase of the vacuum state,
but one by the collective phase deforms the vacuum state itself. The excited states on S1

are also possibly classified in a subspace with degree nr by the Schur function; through
that classification we become able to observe collective excitations. It should be noted that
the collective term is independent of eXγ ∈ ŜU(n). We cannot distinguish raised states
by ,−nr from each other. This means that those states are raised from either the original
vacuum state |m〉 or from the (quasi-) particle state eXγ |m〉 since the invariance relation
eXγ ,−nre−Xγ = ,−nr holds. Owing to this invariance property, the collective motion arises
through the sun-condition of the HF Hamiltonian (2.4). Then one can obtain the concepts of
particle and collective motions. This statement just explains an algebraic mechanism working
behind superficial observation for a unified understanding of both the particle and collective
motions.

Next we observe the TDHF equation on τ -functional space. The τ -function should be
a projection of the ŜU(n) group orbit eXγ |m〉 onto another group orbit of 〈m|eH(x) (H(x) =∑

j�1 xj,j and x = (x1, x2, · · ·)), that is to say, τm(x, ĝsu) ≡ 〈m|eH(x)eXγ |m〉. From
[Xγ ,,nr ] = 0 the τ -function is independent on xnr . While the τ -functional method
describes an x-flow by H(x), the TDHF theory describes a t-flow of γ (t) owing to the
HF Hamiltonian satisfying the sun-condition. This point is an essential difference between
the two methods. Determination of solutions in the τ -functional method is nothing but that
of subgroup orbits of the Xγ . In this sense, it is said that both the methods have treated
common problems of how we could find forms of subgroup orbits truncated from a fully
parametrized group manifold based on the Plücker relation. The above different point raises
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an interesting mathematical problem of the mean-field theory. Its construction on groups
is made on maps from a group orbit onto another orbit of the same group under invariant
group integration. Therefore the mean-field theory involves the generator coordinate (GC)
method [10,11]. It may provide a nonlinear soliton-superposition method on a nonlinear space
(Grassmannian) [10,12]. Standing on the viewpoint of local symmetry of infinite-dimensional
fermion systems behind global symmetry of finite ones, we might rebuild the GC and nonlinear
superposition methods by the infinite-dimensional shift operators. Then we will be able to
study concrete connections between the methods in the mean-field theory and in the soliton
theory [6, 13, 14].

Introducing a matrix F c
su, the TDHF equation (2.9) on S1 can be simply rewritten as

i∂t ĝsu = Fsu(ĝsu)ĝsu

Fsu(ĝsu)
d= F[W(ĝsu)] − F c

su(ĝsu) − ĝsu · ∂t ε̂ı0 · ĝ†
su

−1

n

∑
r�1

Tr
(Fr ·În(r)+F−r ·În(−r)

)
{(F c

su)r}αβ(ĝ, ∂tϕ)
d= −∂tϕ ·

∑
s∈Z

s(gsg
†
s−r )αβ

(3.7)

which can be transcribed into the equation on τ -functional space [3] as

i∂tτm(x, ĝsu(t)) = HF∞ su(x, ∂̃x, ĝsu(t))τm(x, ĝsu(t))

HF∞ su(x, ∂̃x, ĝsu(t)) =
∑
r,s∈Z

{(Fsu)r (ĝsu(t))}αβ z̃n(s−r)+α,ns+β(x, ∂̃x) (3.8)

where

z̃ij
d= zij − δij · 1 (j =� 0)

zij (x, ∂̃x)
d=

∑
µ,ν�0,k�0

Si+k+µ−m(x)S−j−k+ν+m(−x)Sµ(−∂̃x)Sν(∂̃x)

∂̃x
d=

(
∂

∂x1
,

1

2

∂

∂x2
, . . .

)
.

(3.9)

Equation (3.8) is not dependent on a set of {xnr}. We, however, become aware of the
t-flow on the xnr if we carefully pay attention to the sun-condition for Fsu(ĝsu) given
through the second equation of (3.7). By using the boson mapping operator 〈m|eH(x)

with H(x) = ∑
k�1;�=nr xk,k +

∑
r�1 xnr,nr (Hamiltonian in τ -functional method) and

equations (3.5) and (3.6), a ûn group orbit of eXγ e−iXεı |m〉 can be mapped onto the τ -functional
space as

τm(x, ĝu) = e− 1
2

∑
r�1 nr|εr |2−i

∑
r�1 ε

�
r nrxnr e−i

∑m
a=1(εı0)aa τm(x, ĝsu). (3.10)

The second term of the first exponent in the RHS shows us the t-flow at each point on xnr due
to the TD nature of ε�r (ĝsu(t)). Then it is concluded as follows: while a particle motion appears
as the t-flow of τm(x, ĝsu(t)) and also as the phase exp[−i

∑m
a=1{εı0(ĝsu(t))}aa], a collective

motion appears as a motion of vacuum in the τ -function, which makes a change of amplitudes
of both the vacuum and excited states. According to the usual SCF method if we attend only
to the vacuum state, we see the collective motion is variation of the amplitude, which just
corresponds to the motion of the TD mean-field potential.

Owing to the simplicity of the stationary solution of equation (2.10), we can prove the
manifest existence of deformation and oscillation of the vacuum state and show how the usual
RPA theory is embedded into the present new theory. From (2.10), solutions for εr(t) and



Concepts of particle and collective motions in fermion many-body systems 6489

ε�r (t) with constant terms cr(ĝ0
su) and c�r (ĝ

0
su) are obtained as

εr(t) = i

nrωc

Tr Fr (ĝ
0
su) + cr(ĝ

0
su)e

irωct ε�r (t) = − i

nrωc

Tr F−r (ĝ
0
su) + c�r (ĝ

0
su)e

−irωct

(3.11)

|εr |2 = 1

(nrωc)2
| Tr Fr (ĝ

0
su)|2 + |cr(ĝ0

su)|2 +
i

n

{
Tr Fr (ĝ

0
su) · c�r (ĝ0

su)e
−irωct − c.c.

}
(3.12)

where we have used Tr F−r = (Tr Fr )
�. Regarding the stationary group orbit U(gu)|φ〉 as

eXγ e−iXεı |m〉 in (3.6) then we have

eXγ e−iXεı |m〉 = exp

[
−

∑
r�1

{
1

nrωc

(Tr Fr (ĝ
0
su))

� + ic�r (ĝ
0
su)e

−irωct

}
,−nr

]

× exp

[
− 1

2

∑
r�1

(
1

nrω2
c

| Tr Fr (ĝ
0
su)|2 + nr|cr(ĝ0

su)|2

+ir
{

Tr Fr (ĝ
0
su) · c�r (ĝ0

su)e
−irωct − c.c.

})]
×e−i

∑m
a=1(εı

0
0(ĝ

0
su))aa t · U(ĝ0

su)|m〉. (3.13)

In the above we have expressed the dependence of each quantity on ĝ0
su explicitly to show

the relation between an SU(n) group orbit and particle and collective phases. A function
corresponding to the vacuum state, 〈m|eXγ e−iXεı |m〉, can be obtained, if we equate the RHS of
the first line in the above to one using 〈m|,−nr = 0. The usual SCF treatment in the finite
many-body systems has never derived such a unified expression for particle and collective
modes. It induces only the particle phase and not the collective one. Therefore it describes
a collective motion as a recovery of a symmetry of the HF Hamiltonian since the vacuum
state breaks the symmetry. Remember that we have selected a vacuum state |m〉 with broken
symmetry on S1. The shift operators ,−nr make an essential role for collective motions and
behave as quantal collective boson operators rather than the ordinary RPA operator. The circle
S1 takes an active part in causing resonance (interference) between fermions. This has never
been seen manifestly in the usual SCF method. As for the resonance, F c

su in (3.7) produces
elements of the vector field on ĝsu induced by a rotation of S1 which corresponds to a motion
of the common gauge phase ϕ of the infinite-dimensional fermion operators. Thus F c

su plays a
qualitative role of the collective HF Hamiltonian describing the resonating phenomena among
the fermions. These phenomena take behaviours of a rigid motion occurring from only the
term ∂tϕ (remember the cranking model by Inglis [15]). The quantitative magnitude of the
resonance is evaluated by distribution of values of the matrix F c

su. As a result the so-called
collectivity in the usual SCF method is attributed to a geometrical property of Grm on S1 which
is independent from F[W(ĝsu)]. This fact asserts that clarification of the algebro-geometrical
structure of Grm on S1 becomes a very important problem to construct various coordinate
systems describing collective motions. ∂tϕ, i.e. ωc means the component due to projection of
F[W(ĝsu)] onto the F c

su. The above are the algebro-geometrical mechanism describing the
symmetry breaking of fermion systems and successive occurrence of the collective motion due
to the recovery of the symmetry.

To obtain solutions of the new equation (3.7) we must determine not only forms of
subgroup orbits or the corresponding sub-Lie algebras but also initial conditions for εr(t)

and ε�r (t), whose conditions in the stationary solution correspond to the decision of cr(ĝ0
su)

and c�r (ĝ
0
su). ĝ0

su is a function on collective variables [3]. We should establish mathematical
tools to extract them out of a fully parametrized TDHF manifold with the aid of the Plücker
relation on S1, i.e. the soliton equation derived in I. Further we have to clarify the relation
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between the above initial conditions and collective variables. Then one may find interesting
illustrative problems for exploring algebraic relations of the fermion, boson and vacuum in
the description for particle and collective motions and mean-field potential in condensed
matter physics and nuclear physics. The expression for algebraic relations of the fermion
and boson on the τ -functional space can be achieved by changing ,−nr to nrxnr since the
isomorphism σm;F (m) (m-charged fermion space) �→ B(m) (corresponding boson space) is
given as ,nr �→ ∂

∂xnr
, ,−nr �→ nrxnr [8].

We will now embed the usual RPA equation in (2.10) onto F∞ as follows: along the
same line as the conventional manner, let us denote by g0 and g̃ (∈ SU(n)) a stationary
solution describing an equilibrium state and a small fluctuational one around it, respectively.
We here omit subscript su unless we have a fear of misunderstanding. The fluctuational term
is approximated as g̃ ≈ In + η�θz − ηθ†z−1 + O(|η|2) under the condition of a very small
norm ‖ θ ‖= |η| ≈ 0. For simplicity, we assume θ† and θ to be composed of only p–h type
components as

θ† d=
(

0 ϕ

ψ 0

)
θ

d=
(

0 ψ†

ϕ† 0

)
. (3.14)

Then the density matrix and the HF Hamiltonian are approximated as

W = W0 + W1z + W−1z
−1 + O(z±2) F = F0 + F1z + F−1z

−1 + O(z±2)

W0 = W 0
0 + �W0 F0 = F0

0 + �F0
(3.15)

where

(W 0
0 )αβ =

m∑
a=1

g0
αag

0†
aβ �W0 = |η|2

n∑
i,j=m+1

g0
αi(ϕ

†ϕ + ψψ†)ij g
0†
jβ

W1 = η�g0

(
0 −ψ†

ϕ† 0

)
g0† W−1 = ηg0

(
0 ϕ

−ψ 0

)
g0†

(3.16)

(F0
0 )αβ = hαβ + [αβ|γ δ](W 0

0 )δγ (�F0)αβ = [αβ|γ δ](�W0)δγ

(F±1)αβ = [αβ|γ δ](W±1)δγ .
(3.17)

The F0
0 is diagonalized as g0

0
†F0

0g
0
0 = εı0

0. We further define matrices of sun-elements as

F̃±1
d= F±1 − 1

n
Tr F±1 · In. (3.18)

The trace terms give no influence on the elements of p–h type but due to them the diagonal
elements of h–h type can be closed within the first order of η and η�, in a part of the RPA
equation given below. Substituting these quantities into equation (2.10), we can easily find the
RPA equation

ωc




. . .

ηθ† 0 η�θ

ηθ† 0 η�θ

ηθ† 0 η�θ
. . .




=







. . .

εı0
0

εı0
0

εı0
0

. . .


 ,




. . .

−ηθ† In η�θ

−ηθ† In η�θ

−ηθ† In η�θ
. . .
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+




. . .

g0†

g0†

g0†

. . .







. . .

F̃−1 0 F̃1

F̃−1 0 F̃1

F̃−1 0 F̃1
. . .




×




. . .

g0

g0

g0

. . .




+ higher order terms of O(η2, η�2, ηη�, η�η). (3.19)

The collective HF Hamiltonian F c and classical collective Hamiltonian Hc up to |η|2 can be
given as

F c = ωcĝ
0




. . .

ηθ† |η|2[θ, θ†] η�θ

ηθ† |η|2[θ, θ†] η�θ

ηθ† |η|2[θ, θ†] η�θ
. . .


 ĝ0†

Hc = 〈m|U−1(ĝ0)

n∑
α,β=1

1∑
r=−1

∑
s∈Z

(F c
r )αβ : ψn(s−r)+αψ

�
ns+β : U(ĝ0)|m〉

= ωcη
�η〈m|

n∑
α,β=1

∑
s∈Z

[θ, θ†]αβ : ψns+αψ
�
ns+β : |m〉 = ωcη

�η

(3.20)

where we have used (3.3) and imposed a weak orthogonality condition as we did in the usual
SCF treatment. Through the procedure developed up to now, we can see an important role of
circle S1 for appearance of collective motions rather than that by collective variables η� and η.
Then the Fock space of finite-dimensional fermion systems has the algebraic structure to be
embedded into that of infinite-dimensional fermion ones.

A spectral parameter of the iso-spectral equation in the soliton theory and collective
variables in the SCF method, though showing different aspects at a glance, work as scaling
parameters on S1. The former relates to scaling in description by analytical continuation of S1,
i.e. z. The latter play the role of deformation parameters of loop paths in the finite-dimensional
Grassmannian Grm. They are also regarded as group parameters specifying group symmetry
of the SCF equation [3,16] and become a coordinate system on the collective submanifold [2].
We will discuss elsewhere clearly relations between the spectral parameter and the collective
variables, which concern decision of initial conditions for εr(t) and ε�r (t). We will also establish
the algorithm to obtain subgroup manifolds or subalgebras based on the Plücker relation on S1.
In concrete applications to physics, we must take consideration of multifariously parametrized
collective motions beyond description by a single pair of collective variables. The TDHF theory
on S1 is extended inevitably to that on multi-circles. Then we meet with a problem of how
the Plücker relation on the multi-circles is constructed, which connects to a multi-component
soliton theory [17].

Suppose the existence of a vacuum with broken symmetry hidden behind the symmetry.
How does one take analytical tools for problems of broken symmetry in nonlinear physics
into the SCF method? Very recently another infinite-dimensional algebraic approach has
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been proposed by using the Bethe ansatz (BA) wavefunction [18] and exact solutions for
the SU(2) Lipkin–Meshkov–Glick (LMG)-model Hamiltonian [19], the SU(2) pairing one
etc are described in a language of the infinite-dimensional Lie algebra [20]. This algebra is
constructed by a power series expansion of the finite-dimensional Lie algebra with respect
to parameters involved in the Hamiltonians. This becomes an infinitesimal form of the
corresponding nonlinear algebra generated by building blocks of the BA wavefunctions [21].
On the other hand, we have introduced the infinite-dimensional Lie algebra from the viewpoint
of loop group. How do we relate the two methods to each other? A further study should be
pursued to obtain a collective submanifold decided by the SCF Hamiltonian with the use of
the SU(2) LMG-model Hamiltonian. Then we will acquire a clue to build a relation between
the method using the Gaudin model [21, 22] and the present method.

4. Summary and concluding remarks

In I, to overcome the perturbative method, we have aimed at rebuilding the TDHF theory
along the soliton theory in F∞ and have shown manifestly that the framework of the theory
turns out to be a new tool for microscopic understanding of fermion many-body systems. It
elucidates simply and clearly the algebraic mechanism working behind the usual concepts of
particle and collective motions of the systems, standing on the infinite-dimensional fermions.
It also provides the physical meaning of a circle S1, though being artificial in the soliton theory.
The present circle is interpreted as a common gauge factor of fermions by which we can see
resonating/interfering phenomena as collective motions.

The intimate relation of the SCF theory to the soliton theory comes from ways of
constructing a closed system of soliton solution spaces. Hitherto the usual SCF method has
been almost devoted to approach to such resonating phenomena in finite fermion systems.
We must contrive construction of optimal coordinate systems on a group manifold on the
basis of a useful principle. For this purpose the relation between the boson expansion method
for the finite fermion systems and the τ -functional method for the infinite ones should be
intensively investigated to clarify algebro-geometric structures of integrable systems. Such
algebro-geometric approaches will achive connection between finite- and infinite-dimensional
fermion systems. Various physical concepts and mathematical methods in the usual SCF
theory may work well also in the infinite-dimensional ones. The SCF method mainly based
on global symmetry so far should be much improved, noticing the local symmetry of the
infinite-dimensional ones. Then the SCF method on S1 may be expected to open a new area in
vigorous pursuit of wider fields of physics. The GC method may provide soliton-superposition
principles on nonlinear space (Grassmannian) [10,12]. From the viewpoint of local symmetry
of infinite-dimensional fermion systems behind global symmetry of finite ones, it is possible
to reconstruct the GC and nonlinear superposition methods using the infinite-dimensional shift
operators. Then we will be able to study the superposition method in soliton theory, which
allows an exact nonlinear superposition principle [6, 13].
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